
An Adaptive Spatial-Temporal GPU Scheduling
in Edge Cloud Computing Environment⋆

Taewoo Kim[0000−0003−4290−6460], Tuan Manh Tao[0009−0007−8317−2113],
Khac Tuyen Dinh[0009−0004−2558−6404], Minsu Jeon[0000−0002−2739−8149],

Changha Lee[0000−0003−3687−2989], and Chan-Hyun Youn[0000−0002−3970−7308]

Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
{taewoo_kim,ttmanh,tuyen.dk,msjeon,changha.lee,chyoun}@kaist.ac.kr

1 Proposed Heuristic Spatial-Temporal Scheduling with
adaptive GPU Provisioning

Edge cloud computing with GPUs enables low-latency real-time applications.
An efficient GPU scheduler optimizes hardware utilization and meets service
latency objectives (SLOs). NVIDIA’s Multi-Process Services (MPS) [1] enables
concurrent execution of multiple DNN tasks.

In this work, we propose a hybrid Spatial-Temporal GPU scheduling ap-
proach with adaptive GPU partitioning to address the heterogeneous workload
demand. Our approach introduces a GPU adaptive spatial partitioning scheme to
improve GPU utilization and minimize GPU resource reconfiguration overhead
expressed through Fig. 1.

Procedure 1. Inter-GPU
Partition scheduling with

Spatial Sharing

Procedure 2. Intra-GPU
Partition scheduling with

Temporal Sharing

Procedure 3. Spatial-temporal DL Scheduling algorithm with
Adaptive GPU Partition

Frontend Inference Scheduler

Spatial Partition Library (NVIDIA-MPS)

Requests Queues

𝑚𝑜𝑑𝑒𝑙𝑖 , 𝑟𝑎𝑡𝑒𝑖 , 𝐿𝑖

Service A

Service B

Service C

GPU
Partition 1

GPU
Partition 2

GPU Partition 3

DRAM

Cache

Ctrl.
Unit

Cache

Ctrl.
Unit

…

CUDA Cores

GPU
Partition 1

GPU
Partition 2

GPU Partition 3

DRAM

Cache

Ctrl.
Unit

Cache

Ctrl.
Unit

…

CUDA Cores

GPU
Partition 1

GPU
Partition 2

GPU Partition 3

DRAM

Cache

Ctrl.
Unit

Cache

Ctrl.
Unit

…

CUDA Cores

Multi-GPU Clusters

Partition 1 = p %

Model 2 Model 3

decide GPU

partition

Spatial-

Temporal

SchedulerService Model

Processing

Time

Interference

Model

Batch size,

Partition

size

time t
Partition 1

ratio of SMs

Partition 2

Partition 3
1.0

p1 %

Model 1 with 1-st batch Model 1 with 2-nd batchModel 2 with 1-st batch Model 2 with 2-nd batch

Model 3 with 1-st batch Model 3 with 2-nd batch …

The proposed method consists of

Temporal-sharing

Spatial

-

sharing

dynamic GPU

partition
…

Fig. 1. An architecture of the proposed spatial-temporal sharing approach with adap-
tive GPU partitioning.

The objective of the GPU partitioning strategy is to optimize the overall
throughput of the system. To achieve this, the scheduler prioritizes models with
⋆ This work is supported by Samsung Electronics Co., Ltd.

2 T. Kim et al.

high request rates by determining the most efficient GPU partition size for them.
Upon collecting statistics on the service models that need to be rescheduled, the
scheduler employs a greedy approach. It sorts the models to be rescheduled
based on their request rate, starting with the highest request rate model. For
each scheduled model, the scheduler identifies the ideal GPU partition size.

2 Experiments and Disscusion

We select 3 inference workloads: Resnet18, Resnet50[2], and VGG16[3] at a re-
quest rate of 50 requests/s with the starting time stamp 0, 50, and 100, respec-
tively. This simulation confirms the efficiency of the GPU dynamic partitioning
algorithm in preserving SLOs for concurrent services with temporal sharing.

3

SLO violation

vgg16 SLO

resnet50 SLO

resnet18 SLO

Time step(s)
(a)

In
fe

re
n

ce
 t

im
e(

m
s)

In
fe

re
n

ce
 t

im
e(

m
s)

Time step(s)
(b)

0

10

20

30

40

50

0 50 100 150 200 250 300 350
0

10

20

30

40

50

400 450 500
0 50 100 150 200 250 300 350 400 450 500

vgg16 SLO

resnet50 SLO

resnet18 SLO

resnet18
resnet50
vgg16

resnet18
resnet50
vgg16

Fig. 2. Concurrent models inference time when (a) running with Default MPS as base-
line and (b) proposed GPU provisioning method during 500 sec.

Fig 2 (b) shows GPU scheduler’s adaptive resource partitioning for concur-
rent service models. Consistent inference latency is achieved throughout, demon-
strating performance isolation. In contrast, the default MPS task scheduler (a)
fails to ensure isolation, causing unpredictable latency fluctuations during co-
execution, especially during peak periods (time step 100-400).

References

1. NVIDIA Multi-Process Services,https://docs.nvidia.com/deploy/mps/index.html.
Last accessed 15 May 2023

2. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778

3. Simonyan, K, Zisserman, A. (2014). Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556.

