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1 Proposed Heuristic Spatial-Temporal Scheduling with
adaptive GPU Provisioning

Edge cloud computing with GPUs enables low-latency real-time applications.
An efficient GPU scheduler optimizes hardware utilization and meets service
latency objectives (SLOs). NVIDIA’s Multi-Process Services (MPS) [1] enables
concurrent execution of multiple DNN tasks.

In this work, we propose a hybrid Spatial-Temporal GPU scheduling ap-
proach with adaptive GPU partitioning to address the heterogeneous workload
demand. Our approach introduces a GPU adaptive spatial partitioning scheme to
improve GPU utilization and minimize GPU resource reconfiguration overhead
expressed through Fig. 1.
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Fig. 1. An architecture of the proposed spatial-temporal sharing approach with adap-
tive GPU partitioning.

The objective of the GPU partitioning strategy is to optimize the overall
throughput of the system. To achieve this, the scheduler prioritizes models with
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high request rates by determining the most efficient GPU partition size for them.
Upon collecting statistics on the service models that need to be rescheduled, the
scheduler employs a greedy approach. It sorts the models to be rescheduled
based on their request rate, starting with the highest request rate model. For
each scheduled model, the scheduler identifies the ideal GPU partition size.

2 Experiments and Disscusion

We select 3 inference workloads: Resnet18, Resnet50[2], and VGG16[3] at a re-
quest rate of 50 requests/s with the starting time stamp 0, 50, and 100, respec-
tively. This simulation confirms the efficiency of the GPU dynamic partitioning
algorithm in preserving SLOs for concurrent services with temporal sharing.
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Fig. 2. Concurrent models inference time when (a) running with Default MPS as base-
line and (b) proposed GPU provisioning method during 500 sec.

Fig 2 (b) shows GPU scheduler’s adaptive resource partitioning for concur-
rent service models. Consistent inference latency is achieved throughout, demon-
strating performance isolation. In contrast, the default MPS task scheduler (a)
fails to ensure isolation, causing unpredictable latency fluctuations during co-
execution, especially during peak periods (time step 100-400).
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